| 注册
首页|期刊导航|应用数学和力学|基于l1-l2范数的块稀疏信号重构

基于l1-l2范数的块稀疏信号重构

陈鹏清 黄尉

应用数学和力学2017,Vol.38Issue(8):932-942,11.
应用数学和力学2017,Vol.38Issue(8):932-942,11.DOI:10.21656/1000-0887.370230

基于l1-l2范数的块稀疏信号重构

Block-Sparse Signal Recovery Based on Norm Minimization

陈鹏清 1黄尉1

作者信息

  • 1. 合肥工业大学数学学院,合肥230009
  • 折叠

摘要

Abstract

Compressed sensing (CS) is a newly developed theoretical framework for information acquisition and processing.Through the solution of non-linear optimization problems,sparse and compressible signals can be recovered from small-scale linear and non-adaptive measurements.Block-sparse signals as typical sparse ones exhibit additional block structures where the non-zero elements occur in blocks (or clusters).Based on the previous l1-2 norm minimization method given by YIN Peng-hang,LOU Yi-fei,HE Qi,et al.for common sparse signal recovery,the l1-l2 minimization recovery algorithm was extended to the block-sparse model,the properties of the l1-l2 norm were proved and the sufficient condition for block-sparse signal recovery was established.Meanwhile,an iterative method for block-sparse l1-l2 minimization was presented by means of the DCA (difference of convex functions algorithm) and the ADMM (alternating direction method of multipliers).The numerical simulation results demonstrate that the signal recovery success rate of the proposed algorithm is higher than those of the existing algorithms.

关键词

块稀疏/l1-l2范数/压缩感知/重构算法

Key words

block-sparse/l1-l2 norm/compressed sensing/recovery algorithm

分类

数理科学

引用本文复制引用

陈鹏清,黄尉..基于l1-l2范数的块稀疏信号重构[J].应用数学和力学,2017,38(8):932-942,11.

基金项目

The Major Research Plan of the National Natural Science Foundation of China(91538112) (91538112)

The National Science Fund for Young Scholars of China(11201450)国家自然科学基金重大研究计划(91538112) (11201450)

国家自然科学基金青年科学基金(11201450) (11201450)

应用数学和力学

OA北大核心CSCDCSTPCD

1000-0887

访问量0
|
下载量0
段落导航相关论文