| 注册
首页|期刊导航|中国电机工程学报|一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法

一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法

崔江 唐军祥 龚春英 张卓然

中国电机工程学报2017,Vol.37Issue(19):5696-5706,11.
中国电机工程学报2017,Vol.37Issue(19):5696-5706,11.DOI:10.13334/j.0258-8013.pcsee.162071

一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法

A Fault Feature Extraction Method of Aerospace Generator Rotating Rectifier Based on Improved Stacked Auto-encoder

崔江 1唐军祥 1龚春英 1张卓然1

作者信息

  • 1. 南京航空航天大学自动化学院,江苏省南京市211106
  • 折叠

摘要

Abstract

This paper proposed a fault feature extraction method based on the stacked auto-encoder (SAE),which is optimized by the grey relational analysis (GRA).This method can extract fault features from raw data adaptively,and this method can be applied to fault diagnosis of rotating rectifier diodes in aerospace generator.First,filed current of aerospace generator excitation is collected.Second,the deep learning theory,combined with the grey relational analysis,is adopted to train the auto-encoder for achieving a good network structure of stack auto-encoders,which can extract the fault features adaptively from the generator current data information.Finally,fault diagnosis can be implemented with the support vector machine classifier.The performances of the presented method were compared with fast Fourier transform (FFT) method through simulations and physical experiments.The experiment results showed that the presented fault extractor is automatic and adaptive,and the achieved features with this method can be evaluated ideally with the support vector machine classifier.

关键词

航空发电机/旋转整流器/特征提取/自编码机/灰色关联度分析/深度学习

Key words

aerospace generator/rotating rectifier/feature extraction/auto-encoder/grey relational analysis/deep learning

分类

信息技术与安全科学

引用本文复制引用

崔江,唐军祥,龚春英,张卓然..一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法[J].中国电机工程学报,2017,37(19):5696-5706,11.

基金项目

国家自然科学基金项目(51377079) (51377079)

中央高校基本科研业务费专项资金资助(NS2017019).Project Supported by National Natural Science Foundation of China(51377079) (NS2017019)

Fundamental Research Funds for the Central Universities (NS2017019). (NS2017019)

中国电机工程学报

OA北大核心CSCDCSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文