| 注册
首页|期刊导航|计算机工程与应用|动态邻居维度学习的多目标粒子群算法

动态邻居维度学习的多目标粒子群算法

肖闪丽 王宇嘉 聂善坤

计算机工程与应用2017,Vol.53Issue(20):31-37,60,8.
计算机工程与应用2017,Vol.53Issue(20):31-37,60,8.DOI:10.3778/j.issn.1002-8331.1606-0137

动态邻居维度学习的多目标粒子群算法

Multi-objective particle swarm optimization based on dynamic neighborhood for dimensional learning

肖闪丽 1王宇嘉 1聂善坤1

作者信息

  • 1. 上海工程技术大学 电子电气工程学院,上海201620
  • 折叠

摘要

Abstract

Focus on the poor behavior of the diversity for multi-objective particle swarm optimization and the selection pressure of population increasing with the variable dimension,a Multi-Objective Particle Swarm Optimization based on Dynamic Neighborhood of Dimensional Learning(DNDL-MOPSO)is proposed.Firstly,an optimum dimensional indi-vidual is established.Then based on the individual and social knowledge,the proposed algorithm improves the formula of the velocity updating and uses a strategy that each dimensional learning object is not fixed. Finally, the random guide learning strategy is used to alleviate the selection pressure.The experimental results indicate that the new algorithm can improve the global convergence and increase the diversity of population.It is effective to solve the benchmark multimodal optimization problems.

关键词

粒子群算法/多目标优化/动态邻居/最优维度粒子/随机向导学习

Key words

Particle Swarm Optimization(PSO)/multi-objective optimization/dynamic neighbor/optimum dimensional individual/random guide learning

分类

信息技术与安全科学

引用本文复制引用

肖闪丽,王宇嘉,聂善坤..动态邻居维度学习的多目标粒子群算法[J].计算机工程与应用,2017,53(20):31-37,60,8.

基金项目

国家自然科学基金(No.61403249) (No.61403249)

上海工程技术大学研究生科研创新项目(No.E309031601178). (No.E309031601178)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文