| 注册
首页|期刊导航|计算机工程与应用|一种改进的基于深度学习的遥感影像拼接方法

一种改进的基于深度学习的遥感影像拼接方法

雒培磊 李国庆 曾怡

计算机工程与应用2017,Vol.53Issue(20):180-186,7.
计算机工程与应用2017,Vol.53Issue(20):180-186,7.DOI:10.3778/j.issn.1002-8331.1702-0105

一种改进的基于深度学习的遥感影像拼接方法

Modified approach to remote sensing image mosaic based on deep learning

雒培磊 1李国庆 2曾怡1

作者信息

  • 1. 北京林业大学 信息学院,北京100083
  • 2. 中国科学院 遥感与数字地球研究所 数据技术部,北京100094
  • 折叠

摘要

Abstract

Image registration and coordinate transformation are two important processes of remote sensing image mosaic in different backgrounds,which are studied respectively in this paper.Focused on the image registration,a method based on hierarchical convolutional features is proposed.This method adaptively obtains image features from CNN(Convolu-tional Neural Networks)and then sends the features derived from different images in different depth to CF(Correlation Filter)to compute the similarity between them.Therefore the locations of the feature points are computed with consider-ing the different depth hierarchical convolutional features.In order to simplify the coordinate transform method,the cross points method is proposed.According to the feature points location from the image registration,the transform parameters can be computed.Then the remote sensing images can be mosaicked by converting all pixels from one image to another. The experimental results show the effectiveness and robustness of the proposed method by comparing to traditional mosaic method based on SIFT(Scale Invariant Feature Transform).

关键词

卷积神经网络(CNN)/图像配准/十字点集/遥感影像拼接

Key words

Convolutional Neural Networks(CNN)/image registration/cross points/remote sensing image mosaic

分类

信息技术与安全科学

引用本文复制引用

雒培磊,李国庆,曾怡..一种改进的基于深度学习的遥感影像拼接方法[J].计算机工程与应用,2017,53(20):180-186,7.

基金项目

海南省重大科技计划项目(No.ZDKJ2016021) (No.ZDKJ2016021)

国家重点研发计划(No.2016YFB0501504) (No.2016YFB0501504)

DBAR中科院"一带一路"专项项目 ()

北京市自然科学基金(No.6164038). (No.6164038)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文