| 注册
首页|期刊导航|南京师大学报(自然科学版)|一种基于逆模拟退火和高斯混合模型的半监督聚类算法

一种基于逆模拟退火和高斯混合模型的半监督聚类算法

王垚 柴变芳 李文斌 吕峰

南京师大学报(自然科学版)2017,Vol.40Issue(3):67-73,7.
南京师大学报(自然科学版)2017,Vol.40Issue(3):67-73,7.DOI:10.3969/j.issn.1001-4616.2017.03.010

一种基于逆模拟退火和高斯混合模型的半监督聚类算法

A Semi-supervised Clustering Algorithm Based on Anti-annealing and Gaussian Mixture Model

王垚 1柴变芳 1李文斌 1吕峰1

作者信息

  • 1. 河北地质大学信息工程学院,河北 石家庄050031
  • 折叠

摘要

Abstract

Semi-supervised Gaussian mixture model(SGMM)based on labeling nodes can improve the accuracy of model parameter estimation. However,the accuracy and convergence of the Expectation Maximization(EM)algorithm are affected by the amount of overlap and mixing coefficients among the Gaussian distributions. In order to improve the accu-racy and speed of the SGMM parameter estimation,the Anti-annealing is combined with the EM algorithm of SGMM. A clustering algorithm of the semi-supervised Gaussian mixture model based on anti-annealing(ASGMM-EM) is proposed. The inverse temperature parameter of the algorithm increases from a smaller value to an upper bound that more than 1 and then back to 1. The semi-supervised clustering EM algorithm is implemented at each inverse temperature parameter. Experiments on synthetic and real data show that the ASGMM-EM is better compared to the algorithms only using semi-supervised or anti-annealing technique.

关键词

高斯混合模型/期望最大化算法/逆模拟退火/半监督聚类

Key words

Gaussian mixture model/expectation maximization algorithm/anti-annealing/semi-supervised clustering

分类

信息技术与安全科学

引用本文复制引用

王垚,柴变芳,李文斌,吕峰..一种基于逆模拟退火和高斯混合模型的半监督聚类算法[J].南京师大学报(自然科学版),2017,40(3):67-73,7.

基金项目

国家自然科学基金(61503260)、河北省研究生创新资助项目(CXZZSS2017131). (61503260)

南京师大学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-4616

访问量0
|
下载量0
段落导航相关论文