| 注册
首页|期刊导航|太原理工大学学报|基于OBE-PLS软测量的过程自适应建模

基于OBE-PLS软测量的过程自适应建模

程瑞辉 庞宇松 乔铁柱 阎高伟

太原理工大学学报2017,Vol.48Issue(4):628-633,6.
太原理工大学学报2017,Vol.48Issue(4):628-633,6.DOI:10.16355/j.cnki.issn1007-9432tyut.2017.04.021

基于OBE-PLS软测量的过程自适应建模

Adaptive Soft Sensing Model Based on OBE-PLS for System Identification

程瑞辉 1庞宇松 2乔铁柱 3阎高伟1

作者信息

  • 1. 太原理工大学信息工程学院,太原030024
  • 2. 代尔夫特理工大学,荷兰代尔夫特2628 CN
  • 3. 太原理工大学物理与光电工程学院,太原030024
  • 折叠

摘要

Abstract

Time-varying and working-condition transition are the main problems in the industrial process.However,the static soft sensor model based on the fixed sample cannot track the current object,which leads to a poor prediction performance.In this paper,a dynamic soft sensor modeling approach based on the optimal bounding ellipsoid (OBE) and the partial least squares (PLS) algorithm was proposed.Firstly,the PLS soft sensor model based on offline data set is built.When a new query sample arrives,the statistics is established by principal component analysis (PCA) to find similar historical samples and use these similar samples to update the PLS model by OBE algorithm,so that the model achieves a good tracking effect.This method can effectively solve the problem of time-varying and working-condition transition in the process.The application results of numerical examples and the actual industrial data were given to verify the effectiveness.

关键词

工况迁移/静态软测量/最优定界椭球/偏最小二乘/动态软测量

Key words

working-condition transition/static soft sensing/optimal bounding ellipsoid/partial least squares/dynamic soft sensing

分类

信息技术与安全科学

引用本文复制引用

程瑞辉,庞宇松,乔铁柱,阎高伟..基于OBE-PLS软测量的过程自适应建模[J].太原理工大学学报,2017,48(4):628-633,6.

基金项目

国家自然科学基金资助项目(61450011) (61450011)

山西省煤基重点科技攻关资助项目(MD2014-07) (MD2014-07)

山西省自然科学基金资助项目(2015011052) (2015011052)

太原理工大学学报

OA北大核心CSTPCD

1007-9432

访问量1
|
下载量0
段落导航相关论文