纺织高校基础科学学报2017,Vol.30Issue(3):331-338,8.DOI:10.13338/j.issn.1006-8341.2017.03.007
一类恒化器模型正平衡解的稳定性
Stability of positive equilibrium for a chemostat model
摘要
Abstract
A diffusive chemostat model with maintenance energy is considered under homogeneous Neumann boundary condition.Firstly,by using the maximum principle and Harnack inequality,the estimates of the upper and positive lower bound of nonconstant positive steadystate solution is obtained.Secondly,the uniformly asymptotically stability of positive constant equilibrium is proved by using eigenvalue theory and the theory of spectral analysis.Finally,by constructing the Lyapunov function,the global asymptotic stability of the positive equilibrium is proved.关键词
恒化器模型/Lyapunov凶数/全局渐近稳定性Key words
chemostat model/Lyapunov function/global asymptotic stability分类
数理科学引用本文复制引用
王欣雨,李艳玲..一类恒化器模型正平衡解的稳定性[J].纺织高校基础科学学报,2017,30(3):331-338,8.基金项目
国家自然科学基金资助项目(61672021) (61672021)