| 注册
首页|期刊导航|计算机与数字工程|基于信息熵与Mahout的推荐算法的研究

基于信息熵与Mahout的推荐算法的研究

樊利 林满山

计算机与数字工程2017,Vol.45Issue(10):1903-1906,1918,5.
计算机与数字工程2017,Vol.45Issue(10):1903-1906,1918,5.DOI:10.3969/j.issn.1672-9722.2017.10.003

基于信息熵与Mahout的推荐算法的研究

Research on Recommendation Algorithm Based on Information Entropy and Mahout

樊利 1林满山1

作者信息

  • 1. 北方工业大学 北京100144
  • 折叠

摘要

Abstract

Aiming at the noise data problem in recommendation algorithm offered by Mahout,the user entropy model is put for-ward.The user entropy model combines the concept of entropy in the information theory and uses the information entropy to measure the content of user information,which filters the noise data by calculating the entropy of users and getting rid of the users with low entropy.The proposed model is validated by using Mahout algorithm including user based collaborative filtering,collaborative filter-ing based on articles and Slope-One recommendation algorithm.The experimental results show that the proposed model can effec-tively filter out noise data,and the mean absolute error hava been decreased.

关键词

噪音数据/信息熵模型/Mahout/推荐算法

Key words

noisedata/information entropy model/Mahout/recommendation

分类

信息技术与安全科学

引用本文复制引用

樊利,林满山..基于信息熵与Mahout的推荐算法的研究[J].计算机与数字工程,2017,45(10):1903-1906,1918,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文