| 注册
首页|期刊导航|传感技术学报|改进的P SO-SVM在表面肌电信号模式识别中的研究

改进的P SO-SVM在表面肌电信号模式识别中的研究

顾明亮 刘俊

传感技术学报2017,Vol.30Issue(10):1459-1464,6.
传感技术学报2017,Vol.30Issue(10):1459-1464,6.DOI:10.3969/j.issn.1004-1699.2017.10.001

改进的P SO-SVM在表面肌电信号模式识别中的研究

A Support Vector Machine Based on an Improved Particle Swarm Optimization Algorithm for SEMG Signal Pattern Recognition

顾明亮 1刘俊2

作者信息

  • 1. 上海电机学院电气学院,上海201306
  • 2. 上海电机学院机械学院,上海201306
  • 折叠

摘要

Abstract

In order to improve the motion pattern recognition rate of EMG signals,this paper proposes an improved PSO algorithm to optimize SVM( IPSO-SVM) . Firstly,IPSO-SVM introduces a way to simplify the position and ve-locity formulas of PSO,then proposes ESE state estimation for premature convergence,and finally adopts 5 test algo-rithms to classify the six hand motion patterns recognition( fist clenching,fist unfolding,internal and external rota-tion,wrist intorsion and wrist extorsion). The results showed that the average accuracy rate of IPSO-SVM is 93.75%and the average accuracy of traditional SVM algorithm is 70.21%;the training and testing time were also obviously reduced. It also has strong robustness and noise immunity. Therefore,the IPSO-SVM algorithm can be used to solve the classification problem of the surface EMG signal,which has a good application value.

关键词

表面肌电信号/模式识别/粒子群优化算法/支持向量机

Key words

surface electromyography signal/pattern recognition/particle swarm optimization algorithm/support vector machine

分类

信息技术与安全科学

引用本文复制引用

顾明亮,刘俊..改进的P SO-SVM在表面肌电信号模式识别中的研究[J].传感技术学报,2017,30(10):1459-1464,6.

基金项目

上海电机学院登峰学科机械工程支持项目(16DFXK01) (16DFXK01)

传感技术学报

OA北大核心CSCDCSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文