首页|期刊导航|分析化学|基于近红外光谱的食用植物油中反式脂肪酸含量快速定量检测及模型优化研究

基于近红外光谱的食用植物油中反式脂肪酸含量快速定量检测及模型优化研究OA北大核心CSCDCSTPCD

Rapid Quantitative Detection and Model Optimization of Trans Fatty Acids in Edible Vegetable Oils by Near Infrared Spectroscopy

中文摘要英文摘要

利用近红外光谱技术对食用植物油中反式脂肪酸(Trans fatty acids,TFA)含量进行快速定量检测,并通过波段选择、预处理方法、变量筛选及建模方法对TFA含量预测模型进行优化.采用AntarisⅡ傅里叶变换近红外光谱仪在4000~10000 cm-1光谱范围采集98个食用植物油样本的近红外透射光谱,然后采用气相色谱法测定TFA的真实含量.首先,对样本原始光谱进行波段、预处理方法优选;在此基础上,采用竞争自适应重加权法(Competiti…查看全部>>

Near infrared spectroscopy (NIR) was used to detect trans fatty acids (TFA) in edible vegetable oils quantitatively. And prediction model of TFA was optimized through band selection, pretreatment method, variable selection and modeling method. NIR spectra of 98 edible vegetable oil samples were collected in spectral range of 4000-10000 cm-1 using an Antaris Ⅱ Fourier transform near infrared spectrometer, and the true content of TFA was measured by gas chroma…查看全部>>

莫欣欣;孙通;刘木华;叶振南

江西农业大学工学院,江西省高校生物光电技术及应用重点实验室, 南昌 330045江西农业大学工学院,江西省高校生物光电技术及应用重点实验室, 南昌 330045江西农业大学工学院,江西省高校生物光电技术及应用重点实验室, 南昌 330045江西出入境检验检疫局,综合技术中心, 南昌 330038

食用植物油近红外光谱模型优化竞争自适应重加权法变量筛选定量检测

Edible vegetable oilsNear infrared spectroscopyModel optimizationCompetitive adaptive reweighted sampling variable selectionQuantitative detection

《分析化学》 2017 (11)

食用植物油中农药残留及苯并(a)芘含量的共线双脉冲LIBS快速定量检测方法研究

1694-1702,9

本文系国家自然科学基金(No. 31401278)、江西省自然科学基金(No. 20151BAB204025)和江西省教育厅科学研究基金(No. GJJ13254)项目资助 This work was supported by the National Natural Science Foundation of China (No. 31401278) and the Natural Science Foundation of Jiangxi Province, China (No. 20151BAB204025)

10.11895/j.issn.0253-3820.170329

评论

您当前未登录!去登录点击加载更多...