| 注册
首页|期刊导航|计算机工程与应用|基于时空优化深度神经网络的AQI等级预测

基于时空优化深度神经网络的AQI等级预测

董婷 赵俭辉 胡勇

计算机工程与应用2017,Vol.53Issue(21):17-23,41,8.
计算机工程与应用2017,Vol.53Issue(21):17-23,41,8.DOI:10.3778/j.issn.1002-8331.1705-0420

基于时空优化深度神经网络的AQI等级预测

AQI levels prediction based on deep neural network with spatial and temporal optimizations

董婷 1赵俭辉 1胡勇2

作者信息

  • 1. 武汉大学 计算机学院,软件工程国家重点实验室,武汉 430072
  • 2. 武汉大学 资源与环境科学学院,武汉 430079
  • 折叠

摘要

Abstract

The existing air quality prediction models have lower precision, and sensitive to noisy data. Thus a new method is proposed for AQI levels prediction based on Stacked Denoising Auto-Encoders(SDAE)model. Firstly, the historical air quality and meteorological monitoring data of Wuhan city are taken as research object. SDAE model is established to study the characteristic expression of the original data layer by layer, and the last layer is connected with a classifier to tune the prediction model. The optimal set of hyper-parameters is found through improved grid search algorithm for multi-parameters. Then, the prediction is obtained from the test set. The indicators such as mean absolute error and mean square error between the predicted value and related actual value are used as the evaluation standards for forecasting perfor-mance. Compared with other network models, it can be proved that SDAE model has better predictive performance. Finally, the input data is optimized considering their spatial and temporal relations. Experimental results show that the spatial optimization based SDAE has the most improvement for predictive performance, and it can obtain more accurate predictions compared with the traditional methods.

关键词

AQI等级/预测/堆栈降噪自编码/优化

Key words

AQI levels/prediction/Stacked Denoising Auto-Encoder(SDAE)/optimization

分类

信息技术与安全科学

引用本文复制引用

董婷,赵俭辉,胡勇..基于时空优化深度神经网络的AQI等级预测[J].计算机工程与应用,2017,53(21):17-23,41,8.

基金项目

中国空间技术研究院创新基金(No.CAST2014) (No.CAST2014)

湖北省科技支撑计划(No.2014BAA149) (No.2014BAA149)

中央高校基本科研业务费专项(No.2042016gf0023). (No.2042016gf0023)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文