| 注册
首页|期刊导航|棉纺织技术|基于粒子群算法优化PCNN的织物疵点分割

基于粒子群算法优化PCNN的织物疵点分割

钱炜 周武能

棉纺织技术2017,Vol.45Issue(10):5-8,4.
棉纺织技术2017,Vol.45Issue(10):5-8,4.

基于粒子群算法优化PCNN的织物疵点分割

Fabric Defect Segmentation Based on Particle Swarm Optimization Optimized PCNN

钱炜 1周武能1

作者信息

  • 1. 东华大学,上海,201620
  • 折叠

摘要

Abstract

Fabric defect segmentation based on particle swarm optimization optimized PCNN parameter was discussed.Three parameters of PCNN were used as the particles of particle swarm.The entropy of image after segmenting by PCNN was used as the fitness function of PSO.According to the fitness function of PSO,the optimal value of parameter in PCNN model was found.The segmentation contrast experiment has verified the feasibility and effectiveness of the method from subjective and objective perspectives.The method is compared with traditional PCNN and OTSU segmentation method.It is considered that the method has better segmentation effect and can improve the automation degree of model efficiently.

关键词

粒子群算法/脉冲耦合神经网络/疵点分割/迭代/适应度

Key words

Particle Swarm Optimization (PSO)/Pulse Coupled Neural Network (PCNN)/Fabric Defect Segmentation/Iteration/Fitness

分类

信息技术与安全科学

引用本文复制引用

钱炜,周武能..基于粒子群算法优化PCNN的织物疵点分割[J].棉纺织技术,2017,45(10):5-8,4.

基金项目

国家自然科学基金(61573095) (61573095)

棉纺织技术

OA北大核心CSTPCD

1001-7415

访问量0
|
下载量0
段落导航相关论文