具有负数量曲率的紧致黎曼流形的Killing向量场OACSTPCD
KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE
本文研究了具有负数量曲率的紧致黎曼流形上的Killing向量场.利用Bochner方法,得到在此类流形上非平凡的Killing向量场的存在的必要条件.这个结果拓广了文献[6]中的定理1.
In this paper,we investigate killing vector fields on compact Riemannian manifolds with negative scalar curvature. By using the Bochner method,we obtain a necessary condition of the existence of non-trivial killing vector fields on these manifolds,which extends Theorem 1 due to[6].
付海平;但萍萍;彭晓芸
南昌大学数学系,江西南昌330031南昌大学数学系,江西南昌330031江西省税务干部学校,江西南昌330029
数理科学
Killing向量场负数量曲率无迹Ricci曲率张量
killing vector fieldnegative scalar curvaturetrace-free Ricci curvature tensor
《数学杂志》 2017 (6)
半黎曼流形中子流形的几何
1118-1124,7
Supported by the National Natural Science Foundations of China(1126103811361041).
评论