首页|期刊导航|数学杂志|具有负数量曲率的紧致黎曼流形的Killing向量场

具有负数量曲率的紧致黎曼流形的Killing向量场OACSTPCD

KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE

中文摘要英文摘要

本文研究了具有负数量曲率的紧致黎曼流形上的Killing向量场.利用Bochner方法,得到在此类流形上非平凡的Killing向量场的存在的必要条件.这个结果拓广了文献[6]中的定理1.

In this paper,we investigate killing vector fields on compact Riemannian manifolds with negative scalar curvature. By using the Bochner method,we obtain a necessary condition of the existence of non-trivial killing vector fields on these manifolds,which extends Theorem 1 due to[6].

付海平;但萍萍;彭晓芸

南昌大学数学系,江西南昌330031南昌大学数学系,江西南昌330031江西省税务干部学校,江西南昌330029

数理科学

Killing向量场负数量曲率无迹Ricci曲率张量

killing vector fieldnegative scalar curvaturetrace-free Ricci curvature tensor

《数学杂志》 2017 (6)

半黎曼流形中子流形的几何

1118-1124,7

Supported by the National Natural Science Foundations of China(1126103811361041).

评论

您当前未登录!去登录点击加载更多...