| 注册
首页|期刊导航|烟草科技|基于卷积神经网络的烟丝物质组成识别方法

基于卷积神经网络的烟丝物质组成识别方法

高震宇 王安 董浩 刘勇 王锦平 周明珠 夏营威 张龙

烟草科技2017,Vol.50Issue(9):68-75,8.
烟草科技2017,Vol.50Issue(9):68-75,8.

基于卷积神经网络的烟丝物质组成识别方法

Identification of tobacco components in cut filler based on convolutional neural network

高震宇 1王安 2董浩 1刘勇 3王锦平 1周明珠 3夏营威 3张龙1

作者信息

  • 1. 中国科学院合肥物质科学研究院应用技术研究所,合肥市长江西路2221号 230088
  • 2. 中国科学技术大学,合肥市包河区金寨路96号 230026
  • 3. 国家烟草质量监督检验中心,郑州高新技术产业开发区枫杨街2号 450001
  • 折叠

摘要

Abstract

For evaluating the blending consistence in cigarette production, the make-up of cut filler, including cut strips, cut stems, expanded cut strips and cut reconstituted tobacco, was identified with a model based on convolutional neural network incorporating deep learning approach. The local images, which reflected the microstructural characteristics of cut filler were used as the inputs of neural network. The output corresponding to each local characteristic image was analyzed and identified, and via statistical analysis the constituents of cut filler were determined. The results showed that the identification accuracies of the model for training samples and testing samples were 100% and 84.95%, respectively. The convolutional neural network combining with the corresponding method of result expressing in the model effectively promotes the identification accuracy for cut filler samples.

关键词

卷积神经网络/叶丝/梗丝/膨胀叶丝/再造烟叶丝/反向传播/深度学习/结构特征/组成成分识别

Key words

Convolutional neural network/Cut strip/Cut stem/Expanded cut strip/Cut reconstituted tobacco/Back propagation/Deep learning/Structural characteristic/Component identification

分类

信息技术与安全科学

引用本文复制引用

高震宇,王安,董浩,刘勇,王锦平,周明珠,夏营威,张龙..基于卷积神经网络的烟丝物质组成识别方法[J].烟草科技,2017,50(9):68-75,8.

基金项目

国家烟草质量监督检验中心科技创新项目"基于计算机视觉的烟丝组分识别方法可行性研究"(522014CA0090) (522014CA0090)

安徽省重大科学仪器专项"食品和食品级接触材料中亚硝胺检测仪的研制及产业化"(151015223). (151015223)

烟草科技

OA北大核心CSCDCSTPCD

1002-0861

访问量0
|
下载量0
段落导航相关论文