| 注册
首页|期刊导航|北京交通大学学报|基于图论的复杂交通环境下车辆检测方法

基于图论的复杂交通环境下车辆检测方法

苏帅 袁雪 张立平 李寒松

北京交通大学学报2017,Vol.41Issue(5):66-72,7.
北京交通大学学报2017,Vol.41Issue(5):66-72,7.DOI:10.11860/j.issn.1673-0291.2017.05.010

基于图论的复杂交通环境下车辆检测方法

Graph-based vehicle detection in complex traffic environment

苏帅 1袁雪 2张立平 1李寒松2

作者信息

  • 1. 北京交通大学电子信息工程学院,北京100044
  • 2. 北京华航无线电测量研究所,北京100013
  • 折叠

摘要

Abstract

The majority of the existing graph-based vehicle-detection systems make use of sliding-window paradigm for vehicle-candidate regions location.In order to improve the speed of vehicle detection and reduce the computational complexity,a new vehicle detection method based on graph theory is proposed in this paper.The algorithm uses Simple Linear Iterative Clustering (SLIC) algorithm to obtain images with several super-pixel nodes for each image,and analyzes the relationship among the nodes to determine the vehicle candidate region finally.In the detection stage,multi-view detectors are established by training the vehicle images which seen as the positive samples and collected on each distinct view.Based on the geometrical information of the bounding boxes,the suitable viewpoint detectors are selected from the multi-view detectors.The results of the public traffic analysis dataset (KITTI) show that the proposed approach leads to better performances when compared with the current stateof-the-art methods with the same feature extraction and classifier algorithms.Moreover,it can also yield better results under the complex background.

关键词

信息处理/车辆检测/车辆候选区域/多视角分类器

Key words

information processing/vehicle detection/vehicle candidate location/multi-view classifiers

分类

信息技术与安全科学

引用本文复制引用

苏帅,袁雪,张立平,李寒松..基于图论的复杂交通环境下车辆检测方法[J].北京交通大学学报,2017,41(5):66-72,7.

基金项目

国家自然科学基金项目(61301186,61673047) (61301186,61673047)

北京市科委重大研究专项(SX2016-04)National Natural Science Foundation of China(61301186,61673047) (SX2016-04)

Beijing Municipal Science & Technology Commission Major Program(SX2016-04) (SX2016-04)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文