| 注册
首页|期刊导航|电力系统自动化|风电场尾流分布计算及场内优化控制方法

风电场尾流分布计算及场内优化控制方法

顾波 张洋 任岩 刘永前

电力系统自动化2017,Vol.41Issue(18):124-129,6.
电力系统自动化2017,Vol.41Issue(18):124-129,6.DOI:10.7500/AEPS20170118016

风电场尾流分布计算及场内优化控制方法

Wake Distribution Calculation and Optimization Control Method for Wind Farms

顾波 1张洋 1任岩 1刘永前2

作者信息

  • 1. 华北水利水电大学电力学院,河南省郑州市450045
  • 2. 新能源电力系统国家重点实验室(华北电力大学),北京市102206
  • 折叠

摘要

Abstract

For existing wind farms,one goal of the wind farm optimization control is to reduce the wake effects and improve the overall power output.The coupling relationship between the variation of state parameters,power output and the wake distribution of wind turbines are analyzed.The calculation method of the intersection area between the wake and the wind rotor is presented.And a wake superposition model among multiple turbines is developed.A wake distribution calculation method is proposed for calculating the wind speed at each turbine location,which can be used to calculate the wind speed distribution of wind farms accurately and efficiently under varying wind speed and direction.Based on the wake distribution calculation model,the power output of overall wind farm is maximized with the axial induction factor of individual wind turbine as the adjustable parameter.The particle swarm optimization (PSO) algorithm is chosen as the optimization searching algorithm,and the wind farm optimal control model is developed.Wind farm Horns Rev in Denmark is selected as example,and the calculation results show that the wind farm wake distribution calculation method is able to accurately calculate the wake distribution,and the wind farm optimization control method will improve the overall power output.

关键词

风电机组/优化控制/风电场/尾流模型/粒子群算法

Key words

wind turbines/optimal control/wind farm/wake model/particle swarm optimization (PSO) algorithm

引用本文复制引用

顾波,张洋,任岩,刘永前..风电场尾流分布计算及场内优化控制方法[J].电力系统自动化,2017,41(18):124-129,6.

基金项目

This work is supported by Key Scientific and Technological Project in Henan Province (No.152102210117).河南省重点科技攻关计划资助项目(152102210117). (No.152102210117)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文