| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于核函数切换和支持向量回归的交通量短时预测模型

基于核函数切换和支持向量回归的交通量短时预测模型

李林超 张健 杨帆 冉斌

东南大学学报(自然科学版)2017,Vol.47Issue(5):1032-1036,5.
东南大学学报(自然科学版)2017,Vol.47Issue(5):1032-1036,5.DOI:10.3969/j.issn.1001-0505.2017.05.030

基于核函数切换和支持向量回归的交通量短时预测模型

Traffic volume prediction based on support vector regression with switch kernel functions

李林超 1张健 2杨帆 3冉斌3

作者信息

  • 1. 东南大学交通学院,南京210096
  • 2. 东南大学物联网交通应用研究中心,南京210096
  • 折叠

摘要

Abstract

To simulate the nonlinear,probabilistic and complicated patterns in the short-term change of the highway traffic volume,a prediction model was proposed based on support vector regression and switch kernel functions.First,support vector regression models were built with different kernel functions by the historical data and the best kernel function was obtained using the fitting error.Then,a support vector machine model was trained.Finally,the best kernel function for the prediction interval was selected and the corresponding support vector regression model was implemented.A case study was used to evaluate the performance of the proposed model.The result shows that the model is superior to the traditional support vector regression model on the predicted accuracy,and thus it is more robust.

关键词

交通运输系统工程/交通量/短时预测/支持向量回归/核函数

Key words

system engineering of communication and transportation/traffic volume/short-term prediction/support vector regression/kernel function

分类

交通工程

引用本文复制引用

李林超,张健,杨帆,冉斌..基于核函数切换和支持向量回归的交通量短时预测模型[J].东南大学学报(自然科学版),2017,47(5):1032-1036,5.

基金项目

交通运输部科技示范工程资助项目(2015364X16030,2014364223150)、国家自然科学基金资助项目(6161001115)、东南大学优秀博士学位论文基金资助项目(YBJJ1736). (2015364X16030,2014364223150)

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文