| 注册
首页|期刊导航|计算机应用与软件|基于振动信号能量熵的轴承故障诊断

基于振动信号能量熵的轴承故障诊断

任玉卿 王海瑞 齐磊 李荣远

计算机应用与软件2017,Vol.34Issue(9):283-287,5.
计算机应用与软件2017,Vol.34Issue(9):283-287,5.DOI:10.3969/j.issn.1000-386x.2017.09.055

基于振动信号能量熵的轴承故障诊断

BEARING FAULT DIAGNOSIS METHOD BASED ON ENERGY ENTROPY OF VIBRATION SIGNAL

任玉卿 1王海瑞 1齐磊 1李荣远1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院 云南昆明650500
  • 折叠

摘要

Abstract

There are a lot of bearings in mechanical equipment,which is the main reason of mechanical failure.Timely and accurate judgment of the bearing fault can effectively prevent the accident caused by the bearing fault and reduce the loss.A Bearing fault diagnosis scheme based on energy entropy is proposed in this paper.Different energy entropy of the bearing vibration signal has different energy distribution in different working condition.The state of the bearing can be judged by the difference of the energy distribution.First,original acceleration vibration signals are decomposed by ensemble empirical mode decomposition (EEMD) into a finite number of stationary intrinsic mode functions (IMFs).To identify the fault pattern and condition,energy feature extracted from a number of IMFs that contained the most dominant fault information could serve as input vectors of relevance vector machine.Practical examples show that the proposed diagnosis approach can identify bearing fault patterns effectively.

关键词

总体平均经验模态分解(EEMD)/能量熵/相关向量机(RVM)/故障诊断

Key words

Ensemble empirical mode decomposition (EEMD)/Energy entropy/RVM/Fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

任玉卿,王海瑞,齐磊,李荣远..基于振动信号能量熵的轴承故障诊断[J].计算机应用与软件,2017,34(9):283-287,5.

基金项目

国家自然科学基金项目(61263023). (61263023)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文