| 注册
首页|期刊导航|计算机应用与软件|基于马尔可夫模型优化的非经典感受野轮廓检测算法

基于马尔可夫模型优化的非经典感受野轮廓检测算法

胡玉兰 刘阳

计算机应用与软件2017,Vol.34Issue(9):294-298,327,6.
计算机应用与软件2017,Vol.34Issue(9):294-298,327,6.DOI:10.3969/j.issn.1000-386x.2017.09.057

基于马尔可夫模型优化的非经典感受野轮廓检测算法

CONTOUR DETECTION ALGORITHM BASED ON MARKOV MODEL OPTIMIZED NON-CLASSICAL RECEPTIVE FIELD

胡玉兰 1刘阳1

作者信息

  • 1. 沈阳理工大学信息科学与工程学院 辽宁沈阳110159
  • 折叠

摘要

Abstract

We present a new algorithm based on isotropic inhibition effect of non-classical receptive field.First,the proposed algorithm introduced multilevel surround suppression into isotropic detection method.Secondly,an improved combination method based on set theory and the idea of edge growth control was proposed,which had solved the influence of the suppression parameter on contour detection.Finally,according to the theory of Markov random field,we established contour probability model,and got the output contour.The experimental results show that the new algorithm has high precision and is superior to the traditional method.

关键词

轮廓检测/非经典感受野/马尔可夫随机场/多级周边抑制

Key words

Contour detection/Non-classical receptive field/Markov random field theory/Multilevel surround inhibition

分类

信息技术与安全科学

引用本文复制引用

胡玉兰,刘阳..基于马尔可夫模型优化的非经典感受野轮廓检测算法[J].计算机应用与软件,2017,34(9):294-298,327,6.

基金项目

国家自然科学基金项目(61373089). (61373089)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文