| 注册
首页|期刊导航|计算机应用与软件|改进的多目标粒子群优化算法

改进的多目标粒子群优化算法

项铁铭 王建成

计算机应用与软件2017,Vol.34Issue(9):302-305,4.
计算机应用与软件2017,Vol.34Issue(9):302-305,4.DOI:10.3969/j.issn.1000-386x.2017.09.059

改进的多目标粒子群优化算法

AN IMPROVED MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM

项铁铭 1王建成1

作者信息

  • 1. 杭州电子科技大学天线与微波技术研究所 浙江杭州310018
  • 折叠

摘要

Abstract

In order to improve the ability to solve the problem of multi-objective optimization (MOPSO),an improved multi-objective particle swarm optimization algorithm (IMOPSO) is proposed.Using IMSPSO,initial population was produced by a uniformly random initialization approach,and non-dominated solutions were selected by fast control strategy to generate the external archive.By comparing the successive generations of particles,we could judge whether they felled into local optima and adopted different updating strategies.At the same time,a disturbance item was added to the particle's updating.The experimental results show that the proposed algorithm significantly surpasses other algorithms in terms of GD(Generational Distance),SP(Spacing).

关键词

外部档案/均匀初始化/快速支配策略/多目标粒子群优化算法/粒子信息档案

Key words

External archive/Uniform and random initialization/Fast control strategy/MOPSO/Particle information archive

分类

信息技术与安全科学

引用本文复制引用

项铁铭,王建成..改进的多目标粒子群优化算法[J].计算机应用与软件,2017,34(9):302-305,4.

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量3
|
下载量0
段落导航相关论文