| 注册
首页|期刊导航|燕山大学学报|基于支持向量回归的人体血压预测方法

基于支持向量回归的人体血压预测方法

赵谞博 赫英迪 李信政 任蓉 任家东

燕山大学学报2017,Vol.41Issue(5):438-443,6.
燕山大学学报2017,Vol.41Issue(5):438-443,6.DOI:10.3969/j.issn.1007-791X.2017.05.009

基于支持向量回归的人体血压预测方法

Predicting method for human blood pressure based on SVR algorithm

赵谞博 1赫英迪 2李信政 3任蓉 1任家东4

作者信息

  • 1. 秦皇岛港股份有限公司,河北 秦皇岛066002
  • 2. 黑龙江大学 建筑工程学院,黑龙江 哈尔滨150080
  • 3. 中国人民解放军白求恩国际和平医院,河北 石家庄050000
  • 4. 燕山大学 信息科学与工程学院,河北 秦皇岛066004
  • 折叠

摘要

Abstract

In view of the problems of long timing for take measurement, the harm causing by continuous measurement to the body and the cumbersome measurement process, an efficient and convenient blood pressure prediction algorithm based on support vector machine regression algorithm was proposed.It firstly analyzed the implicit relationship between human physiological index data and blood pressure and then established the SVR Model. The results of the algorithm were compared with those obtained from three classical machine learning algorithms, i. e. linear regression model, ridge regression model, and neural network model, against two evaluation indexes ( accuracy, root mean square error) . The experimental results showed that support vector machine regression model ( SVR) can accurately and effectively predict blood pressure and be superior to other algorithms.

关键词

生理指标数据/支持向量回归算法/血压预测

Key words

physiological index data/support vector machine regression/blood pressure prediction

分类

信息技术与安全科学

引用本文复制引用

赵谞博,赫英迪,李信政,任蓉,任家东..基于支持向量回归的人体血压预测方法[J].燕山大学学报,2017,41(5):438-443,6.

基金项目

国家自然科学基金资助项目(61572420) (61572420)

燕山大学学报

OA北大核心CSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文