| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|基于PCA和PSO-SVM的手写数字识别应用研究

基于PCA和PSO-SVM的手写数字识别应用研究

张校非 白艳萍 郝岩

重庆理工大学学报(自然科学版)2017,Vol.31Issue(7):140-144,5.
重庆理工大学学报(自然科学版)2017,Vol.31Issue(7):140-144,5.DOI:10.3969/j.issn.1674-8425(z).2017.07.022

基于PCA和PSO-SVM的手写数字识别应用研究

Application Research of Handwritten Numeral Recognition Based on PCA and PSO-SVM

张校非 1白艳萍 1郝岩1

作者信息

  • 1. 中北大学理学院,太原030051
  • 折叠

摘要

Abstract

In this paper,a new method of handwritten numeral recognition based on principal component analysis (PCA) and particle swarm optimization (PSO-SVM) is proposed for the problem of low accuracy of handwritten digit recognition.Firstly,the dimension of the input data is reduced by PCA,then the dimension reduction data is used as the input of SVM,and the kernel function parameter g and the penalty factor c in SVM are optimized by PSO to improve the classification accuracy.The experimental results show that SVM and GA-SVM,with the traditional grid search algorithm,convolutional neural network (CNN) compared with the classification method of PSO-SVM method and it has higher recognition accuracy rate and the operation efficiency is the highest,reached 98.2%,and the performance is better than other types of classification algorithms.

关键词

主成分分析/粒子群算法/支持向量机/手写数字识别

Key words

principal component analysis/particle swarm algorithm/support vector machine/handwritten numeral recognition

分类

信息技术与安全科学

引用本文复制引用

张校非,白艳萍,郝岩..基于PCA和PSO-SVM的手写数字识别应用研究[J].重庆理工大学学报(自然科学版),2017,31(7):140-144,5.

基金项目

国家自然科学基金资助项目(61275120) (61275120)

山西省回国留学人员科研资助项目(2016-088) (2016-088)

重庆理工大学学报(自然科学版)

OA北大核心CSTPCD

1674-8425

访问量0
|
下载量0
段落导航相关论文