| 注册
首页|期刊导航|电力系统自动化|微电网光伏发电的Adaboost天气聚类超短期预测方法

微电网光伏发电的Adaboost天气聚类超短期预测方法

谭津 邓长虹 杨威 梁宁 李丰君

电力系统自动化2017,Vol.41Issue(21):33-39,7.
电力系统自动化2017,Vol.41Issue(21):33-39,7.DOI:10.7500/AEPS20170217006

微电网光伏发电的Adaboost天气聚类超短期预测方法

Ultra-short-term Photovoltaic Power Forecasting in Microgrid Based on Adaboost Clustering

谭津 1邓长虹 1杨威 1梁宁 1李丰君1

作者信息

  • 1. 武汉大学电气工程学院,湖北省武汉市 430072
  • 折叠

摘要

Abstract

The accuracy of photovoltaic (PV) power generation prediction in the microgrid has high relativity with the weather condition.Under cloudy and rainy conditions,random fluctuations of meteorological factors result in low precision of the ultra-short-term power prediction.For this reason,a modified model based on combination of Adaboost clustering and Markov chain is proposed.First,an improved K-nearest neighbor(KNN)classifier is trained with the characteristic variables extracted from solar radiation using the moving average method.To improve the prediction accuracy of cloudy and rainy days,the attenuation coefficient of solar radiation is introduced to modify the Hottel model.A weighted Markov chain model is developed to predict the microgrid PV generation subsequently.The simulation results indicate that the proposed model can appreciably improve the precision of power prediction under different weather conditions and is of great significance to real-time economical dispatch.

关键词

光伏发电/微电网/超短期预测/衰减系数/Adaboost

Key words

photovoltaic power generation/microgrid/ultra-short-term power output forecasting/attenuation coefficient/Adaboost

引用本文复制引用

谭津,邓长虹,杨威,梁宁,李丰君..微电网光伏发电的Adaboost天气聚类超短期预测方法[J].电力系统自动化,2017,41(21):33-39,7.

基金项目

国家重点研发计划资助项目(2017YFB0903700, 2017YFB0903705) (2017YFB0903700, 2017YFB0903705)

武汉市科技创新计划资助项目(2013072304020824).This work is supported by National Key Research and Development Program of China (No. 2017YFB0903700, No.2017YFB0903705) and Science and Technology Project of Wuhan City(No.2013072304020824). (2013072304020824)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文