| 注册
首页|期刊导航|电力系统自动化|基于神经网络平均影响值的超短期风电功率预测

基于神经网络平均影响值的超短期风电功率预测

徐龙博 王伟 张滔 杨莉 汪少勇 李煜东

电力系统自动化2017,Vol.41Issue(21):40-45,6.
电力系统自动化2017,Vol.41Issue(21):40-45,6.DOI:10.7500/AEPS20170321005

基于神经网络平均影响值的超短期风电功率预测

Ultra-short-term Wind Power Prediction Based on Neural Network and Mean Impact Value

徐龙博 1王伟 2张滔 3杨莉 2汪少勇 3李煜东1

作者信息

  • 1. 中国能源建设集团广东省电力设计研究院有限公司,广东省广州市 510663
  • 2. 南瑞集团公司(国网电力科学研究院),江苏省南京市 211106
  • 3. 国电南瑞南京控制系统有限公司,江苏省南京市 210061
  • 折叠

摘要

Abstract

To solve the problems of variable redundancy and model complexity in the prediction model based on the dynamic neural network,an ultra-short-term wind power prediction method is proposed by combining the neural network(NN)and the mean impact value(MIV).In this method,the external and internal contribution rates of the input variables to the output variables (wind power prediction value) are taken into account,and the input variable with the largest contribution to the output variables is selected.Then an optimized NN prediction model for ultra-short-term wind power prediction is developed. The experimental results show that the proposed model reduces the complexity of the prediction model,mitigates the influence of the measuring noise on the prediction accuracy,and obtains good wind power prediction results.

关键词

风电功率/超短期预测/动态神经网络/平均影响值/变量筛选

Key words

wind power/ultra-short-term prediction/dynamic neural network (DNN)/mean impact value (MIV)/variable selection

引用本文复制引用

徐龙博,王伟,张滔,杨莉,汪少勇,李煜东..基于神经网络平均影响值的超短期风电功率预测[J].电力系统自动化,2017,41(21):40-45,6.

基金项目

国家高技术研究发展计划(863计划)资助项目(2013AA050601).This work is supported by National High Technology Research and Development Program of China (863 Program) (No.2013AA050601). (863计划)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文