| 注册
首页|期刊导航|高电压技术|基于大数据挖掘技术的输变电设备故障诊断方法

基于大数据挖掘技术的输变电设备故障诊断方法

胡军 尹立群 李振 郭丽娟 段炼 张玉波

高电压技术2017,Vol.43Issue(11):3690-3697,8.
高电压技术2017,Vol.43Issue(11):3690-3697,8.DOI:10.13336/j.1003-6520.hve.20171031026

基于大数据挖掘技术的输变电设备故障诊断方法

Fault Diagnosis Method of Transmission and Transformation Equipment Based on Big Data Mining Technology

胡军 1尹立群 2李振 1郭丽娟 2段炼 1张玉波2

作者信息

  • 1. 电力系统发电设备控制和仿真国家重点实验室(清华大学电机工程与应用电子技术系),北京100084
  • 2. 广西电网公司电力科学研究院,南宁530023
  • 折叠

摘要

Abstract

The traditional faulty diagnosis method of power transmission and transformation equipment has the disadvantages of being susceptible to experts' subjectivity and model's ossification.In this paper,a new method of equipment fault diagnosis based on big data mining was proposed.Key technologies of this method were introduced,including clustering algorithm of fault patterns,analysis of relevance among status parameters and fault diagnosis based on correlation matrix.The fault cases of an operation oil immersed transformer bushing in recent 10 years were used as big data mining object.The k-means clustering algorithm together with silhouette coefficient could be used to classify fault pattern.Combination of Apriori association algorithm and Tanimoto coefficient could characterize the strength of the relationship between statuses.Fault diagnosis matrix built by Pearson correlation coefficient could precisely evaluate the fault patterns,which was consistent with actual maintenance results.The results of this study show that the inherent law of the recorded data could be obtained based on big data mining,and an adaptive and more accurate device fault diagnosis could be achieved.

关键词

大数据分析/故障诊断/相关性/k-means聚类算法/轮廓系数/Tanimoto系数/Apriori关联算法

Key words

big data analysis, fault diagnosis, k-means clustering algorithm/silhouette coefficient/Tanimoto coefficient/Apriori association

引用本文复制引用

胡军,尹立群,李振,郭丽娟,段炼,张玉波..基于大数据挖掘技术的输变电设备故障诊断方法[J].高电压技术,2017,43(11):3690-3697,8.

基金项目

国家自然科学基金(51429701) (51429701)

南方电网公司科技项目(GX2014-2-0025).Project supported by National Natural Science Foundation of China (51429701),Science and Technology Project of CSG (GX2014-2-0025). (GX2014-2-0025)

高电压技术

OA北大核心CSCDCSTPCD

1003-6520

访问量0
|
下载量0
段落导航相关论文