中北大学学报(自然科学版)2017,Vol.38Issue(5):531-535,5.DOI:10.3969/j.issn.1673-3193.2017.05.005
非自治Fitzhugh-Nagumo方程在周期边界下的整体解
Integral Solution of Non-Autonomous Fitzhugh-Nagumo Equation Under the Periodic Boundary
张珊 1柴玉珍1
作者信息
- 1. 太原理工大学 数学学院,山西 太原 030024
- 折叠
摘要
Abstract
Hodgkin-Huxley is a kind of differential equation describes the relations of nerve fiber mem-brane electric current and the membrane voltage and it is a simplified model of Hodgkin-Huxley.The in-itial-boundary value problem of non-autonomous Fitzhugh-Nagumo system with periodic boundary under the external stimulation is discussed.Firstly,using the Galerkin method and theory of ordinary differen-tial equations the existence of local solution of non-autonomous Fitzhugh-Nagumo equations with period-ic boundary;Secondly,with a new method of local solution for consistent prior estimate proves the ex-istence of global solution;Finally,using Gronwall inequality proves the uniqueness of global solutions of non-autonomous Fitzhugh-Nagumo system as a whole.关键词
Fitzhugh-Nagumo系统/非自治方程/外刺激项/Galerkin方法/Gronwall不等式Key words
Fitzhugh-Nagumo systems/non-autonomous equation/outside stimulus items/Galerkin method/Gronwall inequality分类
数理科学引用本文复制引用
张珊,柴玉珍..非自治Fitzhugh-Nagumo方程在周期边界下的整体解[J].中北大学学报(自然科学版),2017,38(5):531-535,5.