| 注册
首页|期刊导航|黑龙江科技大学学报|在线评论的产品缺陷识别方法

在线评论的产品缺陷识别方法

刘丹 张玉红 闫相斌

黑龙江科技大学学报2017,Vol.27Issue(6):698-704,7.
黑龙江科技大学学报2017,Vol.27Issue(6):698-704,7.DOI:10.3969/j.issn.2095-7262.2017.06.025

在线评论的产品缺陷识别方法

Product defect recognition method for online reviews

刘丹 1张玉红 1闫相斌1

作者信息

  • 1. 哈尔滨工业大学 经济与管理学院,哈尔滨150001
  • 折叠

摘要

Abstract

This paper describes an effort to analyze the defects of enterprise products from Internet users comments. The analysis involves performing text classification of the product reviews using semi su-pervised classification algorithm based on user Co-forest differences; providing defect topic clustering of defect review identified by Co-forest algorithm based on BTM algorithm based on topic model in a way that affords the defect theme, topic description details, and the proportion; and conducting related research on the Jingdong website comments using a brand of a best-selling dehumidifier as an example. The results show that the Co-forest algorithm boasts a higher performance than supervised classification and semi su-pervised classification Tri-training method in terms of defect recognition and classification based on online reviews.

关键词

缺陷识别/在线评论/半监督分类/主题聚类/除湿机

Key words

defect identification/online reviews/semi-supervised classification/topic clustering/de-humidifier

分类

信息技术与安全科学

引用本文复制引用

刘丹,张玉红,闫相斌..在线评论的产品缺陷识别方法[J].黑龙江科技大学学报,2017,27(6):698-704,7.

黑龙江科技大学学报

OACSTPCD

2095-7262

访问量0
|
下载量0
段落导航相关论文