| 注册
首页|期刊导航|计算机工程|基于用户近邻的N维张量分解推荐算法

基于用户近邻的N维张量分解推荐算法

陈健美 孙亚军

计算机工程2017,Vol.43Issue(11):193-197,5.
计算机工程2017,Vol.43Issue(11):193-197,5.DOI:10.3969/j.issn.1000-3428.2017.11.031

基于用户近邻的N维张量分解推荐算法

N Dimensional Tensor Decomposition Recommendation Algorithm Based on User's Neighbors

陈健美 1孙亚军1

作者信息

  • 1. 江苏大学计算机科学与通信工程学院,江苏镇江212013
  • 折叠

摘要

Abstract

Recommendation algorithm based on tensor factorization has low accuracy and data sparseness problem.Therefore,on the basic of the traditional tensor decomposition model,this paper introduces the user nearest neighbor information,and proposes N dimensional tensor decomposition model.Using context aware information,it uses implicit feedback information as the third dimension to establish N dimensional tensor decomposition model.To further improve the the quality of recommendation,it adds the user nearest neighbor information to optimize the N dimensional tensor decomposition model to improve the accuracy of the tensor decomposition recommendation algorithm.Experimental results show that the tensor decomposition recommendation algorithm combined with user nearest neighbor has better accuracy than the traditional tensor decomposition algorithm,can effectively solve the sparsity and accuracy problems.

关键词

协同过滤算法/反馈信息/主成分分析/张量分解/推荐算法

Key words

collaborative filtering algorithm/feedback information/Principal Component Analysis (PCA)/tensor decomposition/recommendation algorithm

分类

信息技术与安全科学

引用本文复制引用

陈健美,孙亚军..基于用户近邻的N维张量分解推荐算法[J].计算机工程,2017,43(11):193-197,5.

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文