| 注册
首页|期刊导航|计算机应用研究|基于灰色粗糙集与BP神经网络的设备故障预测

基于灰色粗糙集与BP神经网络的设备故障预测

郭宇 杨育

计算机应用研究2017,Vol.34Issue(9):2642-2645,4.
计算机应用研究2017,Vol.34Issue(9):2642-2645,4.DOI:10.3969/j.issn.1001-3695.2017.09.017

基于灰色粗糙集与BP神经网络的设备故障预测

Equipment fault prediction based on grey rough set and BP neural network

郭宇 1杨育1

作者信息

  • 1. 重庆大学机械传动国家重点实验室,重庆400030
  • 折叠

摘要

Abstract

In order to predict equipment failure more effectively,this paper proposed a model of equipment fault prediction based on the grey rough set and BP neural network.By use of grey incidence analysis and rough set theory,it reduced a twodimensional fault decision table from both horizontal and vertical dimensions,and removed the redundant data and attributes of the decision table,after the reduction,input the data to the BP neural network to predict the equipment failure.Finally,it carried out a case study on the fault prediction of subway signal equipment,and the results show that the model has smaller prediction error and higher accuracy.

关键词

灰色关联分析/粗糙集/BP神经网络/约简/故障预测

Key words

grey incidence analysis/rough set/BP neural network/reduction/fault prediction

分类

信息技术与安全科学

引用本文复制引用

郭宇,杨育..基于灰色粗糙集与BP神经网络的设备故障预测[J].计算机应用研究,2017,34(9):2642-2645,4.

基金项目

国家自然科学基金资助项目(71571023) (71571023)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文