| 注册
首页|期刊导航|计算机应用研究|多尺度卷积递归神经网络的RGB-D物体识别

多尺度卷积递归神经网络的RGB-D物体识别

骆健 蒋旻 刘星 周龙

计算机应用研究2017,Vol.34Issue(9):2834-2837,2870,5.
计算机应用研究2017,Vol.34Issue(9):2834-2837,2870,5.DOI:10.3969/j.issn.1001-3695.2017.09.060

多尺度卷积递归神经网络的RGB-D物体识别

Multi-scale convolutional-recursive neural networks for RGB-D object recognition

骆健 1蒋旻 1刘星 1周龙1

作者信息

  • 1. 武汉科技大学计算机科学与技术学院智能信息处理与实时工业系统湖北省重点实验室,武汉430065
  • 折叠

摘要

Abstract

In order to fully utilize potential feature information of RGB-D images,this paper proposed a new algorithm called Ms-CRNN.It applied the multi-scale block operation to RGB image,gray imge,depth image and 3D surface normal map from input RGB-D image to form several channels,and convolved each channel with corresponding size of filter.Then,it performed local contrast normalization and subsampling oft the extracted feature maps to obtain low-level invariant features,which were given as inputs to recursive neural networks in order to compose higher order features.It sent vectors combining multi-scale features from all the channels to a SVM classifier for classification.It evaluated the proposed method on RGB-D dataset.Experimental results show that the recognition accuracy of the proposed method for RGB-D objects can reach 88.2%,and has certainly increased the recognition accuracy.

关键词

多尺度/3D曲面法线/递归神经网络/RGB-D物体识别

Key words

multi-scale/3D surface normal/recursive neural networks/RGB-D object recognition

分类

信息技术与安全科学

引用本文复制引用

骆健,蒋旻,刘星,周龙..多尺度卷积递归神经网络的RGB-D物体识别[J].计算机应用研究,2017,34(9):2834-2837,2870,5.

基金项目

国家自然科学基金面上项目(41571396) (41571396)

国家创新训练项目(201410488017) (201410488017)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文