| 注册
首页|期刊导航|计算机应用研究|基于卷积神经网络的目标检测研究综述

基于卷积神经网络的目标检测研究综述

李旭冬 叶茂 李涛

计算机应用研究2017,Vol.34Issue(10):2881-2886,2891,7.
计算机应用研究2017,Vol.34Issue(10):2881-2886,2891,7.DOI:10.3969/j.issn.1001-3695.2017.10.001

基于卷积神经网络的目标检测研究综述

Review of object detection based on convolutional neural networks

李旭冬 1叶茂 1李涛2

作者信息

  • 1. 电子科技大学机器人研究中心,成都611731
  • 2. 河南广播电视大学信息工程系,郑州450008
  • 折叠

摘要

Abstract

With the increase of training data and the improvement of the performance of computers,the CNN-based object detection breaks the bottleneck of traditional object detection and has been the main method of current object detection.Therefore,it is a significant research that how to effectively utilize CNN for object detection.Firstly,this paper reviewed how to solve the problems of traditional object detection by CNN.Secondly,it introduced the basic architecture of CNN and described the current research development and widely-used CNN.Thirdly,this paper mainly analyzed and discussed two kinds of ideas and methods of the CNN-based object detection and pointed out the present deficiency.Finally,it concluded the CNN-based object detection and the future direction.

关键词

卷积神经网络/目标检测/深度学习

Key words

convolutional neural network(CNN)/object detection/deep learning

分类

信息技术与安全科学

引用本文复制引用

李旭冬,叶茂,李涛..基于卷积神经网络的目标检测研究综述[J].计算机应用研究,2017,34(10):2881-2886,2891,7.

基金项目

国家自然科学基金资助项目(61375038) (61375038)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文