| 注册
首页|期刊导航|计算机应用研究|一种基于扩展区域查询的密度聚类算法

一种基于扩展区域查询的密度聚类算法

杨杰明 吴启龙 曲朝阳 张慧莉 蔺洪文 吕正卓

计算机应用研究2017,Vol.34Issue(10):2938-2941,2992,5.
计算机应用研究2017,Vol.34Issue(10):2938-2941,2992,5.DOI:10.3969/j.issn.1001-3695.2017.10.013

一种基于扩展区域查询的密度聚类算法

Density clustering algorithm based on extended range query

杨杰明 1吴启龙 1曲朝阳 1张慧莉 2蔺洪文 2吕正卓2

作者信息

  • 1. 东北电力大学信息工程学院,吉林吉林132012
  • 2. 吉林供电公司信息通信分公司,吉林吉林132000
  • 折叠

摘要

Abstract

There are several troublesome limitations of DBSCAN:a)parameters have to be set;b)the time consumption is intolerable in expansion;c)it is sensitive to the density of starting points;d)it is difficult to identify the adjacent clusters of different densities.This paper proposed an enhanced and efficient density clustering algorithm based on extended range query named GISN-DBSCAN.Firstly,it proposed an extended range query algorithm based on fixed-grids to reduce the time overhead of searching the nearest neighborhood.Then it used the nearest neighbors and reverse nearest neighbors to establish the k-influence space neighborhood of each point.Finally,it presented a computational method of k-outlierness function to distinguish the border points and noise points accurately.Experimental results demonstrate that GISN-DBSCAN can address the drawbacks of DBSCAN algorithm and identify the border points and noise points effectively.

关键词

密度聚类算法/扩展区域查询/k-影响空间域/边界点检测

Key words

density clustering algorithm/extended range query/k-influence space neighborhood/border points detection

分类

信息技术与安全科学

引用本文复制引用

杨杰明,吴启龙,曲朝阳,张慧莉,蔺洪文,吕正卓..一种基于扩展区域查询的密度聚类算法[J].计算机应用研究,2017,34(10):2938-2941,2992,5.

基金项目

国家自然科学基金资助项目(51277023) (51277023)

吉林省科技发展计划资助项目(20140204071GX) (20140204071GX)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量2
|
下载量0
段落导航相关论文