计算机应用研究2017,Vol.34Issue(11):3214-3218,5.DOI:10.3969/j.issn.1001-3695.2017.11.003
函数优化的量子正弦余弦算法
Quantum sine cosine algorithm for function optimization
摘要
Abstract
Sine cosine algorithm(SCA) updates and searches the position of individuals by using the sine and cosine function.This paper proposed a novel population-based optimization algorithm:quantum sine cosine algorithm(QSCA) for soloving function optimization problem.In order to avoid premature convergence of SCA,QSCA used the quantum bit to encode the position of individuals and searched the optimal solution with quantum rotation gate,and adopted quantum gate to mutation.Series of computational experiments on typical benchmark functions compared with that of other algorithms show that the proposed algorithm has a better performance.关键词
量子进化/正弦余弦算法/函数优化Key words
quantum evolution/sine cosine algorithm/function optimization分类
信息技术与安全科学引用本文复制引用
陈聪,马良,刘勇..函数优化的量子正弦余弦算法[J].计算机应用研究,2017,34(11):3214-3218,5.基金项目
国家自然科学基金资助项目(71401106) (71401106)
国家教育部人文社会科学研究规划基金资助项目(16YJA630037) (16YJA630037)
上海市高原学科建设项目 ()
上海高校青年教师培养资助计划项目(ZZsl15018) (ZZsl15018)
上海理工大学国家级培育青年基金资助项目(16HJPY-QN15) (16HJPY-QN15)
上海理工大学博士科研启动经费资助项目(1D-15-303-005) (1D-15-303-005)