| 注册
首页|期刊导航|计算机应用研究|基于反向投影的zero-shot learning目标分类算法研究

基于反向投影的zero-shot learning目标分类算法研究

冯鹏 庹红娅 乔凌峰 王洁欣 敬忠良

计算机应用研究2017,Vol.34Issue(11):3291-3294,4.
计算机应用研究2017,Vol.34Issue(11):3291-3294,4.DOI:10.3969/j.issn.1001-3695.2017.11.020

基于反向投影的zero-shot learning目标分类算法研究

Zero-shot learning object recognition based on inverse projection

冯鹏 1庹红娅 1乔凌峰 1王洁欣 1敬忠良1

作者信息

  • 1. 上海交通大学航空航天学院,上海200240
  • 折叠

摘要

Abstract

Zero-shot learning(ZSL) aims to recognise new objects without having training samples of them.The kernel of the traditional regression method was to project the visual features into the semantic space,without taking full advantage of the sample information contained in the visual features,meanwhile the training computation was large.This paper proposed to project prototype to visual feature space,which was referred to as inverse projection.It had a very efficient closed-form solution.Extensive experiments on two benchmark datasets show that the proposed ZSL method significantly outperforms the state-of-the-arts.

关键词

zero-shot learning/目标分类/反向投影/解析解

Key words

zero-shot learning/objects recognition/inverse projection/closed-form solution

分类

信息技术与安全科学

引用本文复制引用

冯鹏,庹红娅,乔凌峰,王洁欣,敬忠良..基于反向投影的zero-shot learning目标分类算法研究[J].计算机应用研究,2017,34(11):3291-3294,4.

基金项目

国家自然科学基金资助项目(61175028) (61175028)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文