| 注册
首页|期刊导航|计算机应用研究|基于最小方差的股市拐点预测方法

基于最小方差的股市拐点预测方法

石陆魁 秦志娇 闫会强

计算机应用研究2017,Vol.34Issue(11):3373-3378,6.
计算机应用研究2017,Vol.34Issue(11):3373-3378,6.DOI:10.3969/j.issn.1001-3695.2017.11.038

基于最小方差的股市拐点预测方法

Stock turning point prediction method based on minimum variance

石陆魁 1秦志娇 2闫会强1

作者信息

  • 1. 河北工业大学计算机科学与软件学院,天津300401
  • 2. 河北工业大学河北省大数据计算重点实验室,天津300401
  • 折叠

摘要

Abstract

It is very important to predict stock turning point for assisting investment in stock market.However,the forecast of the stock turning point is an imbalanced data classification.To solve the deviation problem caused by treating the imbalance problem with SVM,this paper proposed a method to select the penalty factors.The method defined a judge which was the product of the variances of the recall and precision of all classes after executing cross validation on the training set.It selected the penalty factors corresponding to the minimum product of the variances as the optimal penalty factors of the corresponding categories,and applied the Biased-SVM model to the prediction of stock turning point.In experiments,it selected the common stock indexes as the input vectors and compared the method with other methods to solve the imbalanced problem.Experimental results demonstrate that the minimum variance method improves the recognition accuracy of the two classes including the turning points under guaranteeing the recognition accuracy of the class with more samples.It can provide help investments.

关键词

股市拐点预测/不平衡分类/最小方差法/SVM/惩罚因子

Key words

stock turning point prediction/unbalanced classification/minimum variance method/SVM/penalty factor

分类

信息技术与安全科学

引用本文复制引用

石陆魁,秦志娇,闫会强..基于最小方差的股市拐点预测方法[J].计算机应用研究,2017,34(11):3373-3378,6.

基金项目

天津市应用基础与前沿技术研究计划重点项目(14JCZDJC31600) (14JCZDJC31600)

河北省自然科学基金资助项目(F2016202144) (F2016202144)

河北省高等学校科学技术研究重点资助项目(ZD2014030) (ZD2014030)

河北省科技计划资助项目(13456243) (13456243)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文