| 注册
首页|期刊导航|计算机应用研究|基于卷积神经网络的军事图像分类

基于卷积神经网络的军事图像分类

高惠琳

计算机应用研究2017,Vol.34Issue(11):3518-3520,3.
计算机应用研究2017,Vol.34Issue(11):3518-3520,3.DOI:10.3969/j.issn.1001-3695.2017.11.071

基于卷积神经网络的军事图像分类

Military image classification based on convolutional neural network

高惠琳1

作者信息

  • 1. 北京理工大学自动化学院,北京100081;北京理工大学复杂系统智能控制与决策国家重点实验室,北京100081
  • 折叠

摘要

Abstract

The classification accuracy of the traditional visual features can not meet the requirements in the application of modem military affairs due to the extremely high similarity of the different objects in the battlefield and low recognition rate in complex conditions.This paper presented a new architecture of the convolutional neural network (CNN) based on PCA whitening for solving the classification problem of large-scale images which contained some specific military objects.It efficiently eliminated the relativity of sample data,enhanced the learning ability and improved the accuracy of the object recognition.It tested and evaluated the new CNN model with the large-scale data from military images and compared with the traditional methods.The experiment results show that the algorithm has higher recognition rate on military object recognition.

关键词

军事图像分类/深度学习/卷积神经网络/主成分分析白化/随机池化

Key words

military image classification/deep learning/convolutional neural network/PCA whitening/stochastic-pooling

分类

信息技术与安全科学

引用本文复制引用

高惠琳..基于卷积神经网络的军事图像分类[J].计算机应用研究,2017,34(11):3518-3520,3.

基金项目

国家自然科学基金创新研究群体资助项目(61321002) (61321002)

国家自然科学基金重大国际合作项目(61120106010) (61120106010)

国家教育部长江学者创新团队资助项目(IRT1208) (IRT1208)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文