| 注册
首页|期刊导航|太原理工大学学报|基于小波包变换和极限学习机的滚动轴承故障诊断

基于小波包变换和极限学习机的滚动轴承故障诊断

李瑞莲 兰媛 熊晓燕

太原理工大学学报2017,Vol.48Issue(6):959-962,968,5.
太原理工大学学报2017,Vol.48Issue(6):959-962,968,5.DOI:10.16355/j.cnki.issn1007-9432tyut.2017.06.014

基于小波包变换和极限学习机的滚动轴承故障诊断

Multifault Dignosis for Rolling Bearings Based on Wavelet Packet Transform and Extreme Learning Machine

李瑞莲 1兰媛 2熊晓燕2

作者信息

  • 1. 太原理工大学信息工程学院,太原030024
  • 2. 太原理工大学机械电子工程研究所,太原030024
  • 折叠

摘要

Abstract

In this paper,a new intelligent fault diagnosis scheme and classification based on wavelet packet transform (WPT)and extreme learning machine (ELM)was proposed.The ener-gy of each band was calculated from decomposed original vibration signals as the feature vector in-put to classifiers.A novel classifier,ELM,was introduced in this study to diagnose the fault on rolling bearings.Different kinds of motor bearing vibration signals were analyzed.The results show that the bearing's normal state,single fault state and multifault state can be effectively clas-sified.

关键词

轴承/故障诊断/小波包变换/极限学习机

Key words

rolling bearings/fault diagnosis/wavelet packet transform/extreme learning ma-chine

分类

机械制造

引用本文复制引用

李瑞莲,兰媛,熊晓燕..基于小波包变换和极限学习机的滚动轴承故障诊断[J].太原理工大学学报,2017,48(6):959-962,968,5.

基金项目

国家自然科学基金资助项目(61371062) (61371062)

山西省自然科学基金资助项目(2014081030) (2014081030)

太原理工大学学报

OA北大核心CSTPCD

1007-9432

访问量0
|
下载量0
段落导航相关论文