| 注册
首页|期刊导航|应用数学|一类不带线性结构的随机最优控制问题的最大值原理

一类不带线性结构的随机最优控制问题的最大值原理

王维峰 汪宝彬 杨怀奎

应用数学2017,Vol.30Issue(2):445-456,12.
应用数学2017,Vol.30Issue(2):445-456,12.

一类不带线性结构的随机最优控制问题的最大值原理

The Maximum Principle for a Stochastic Optimal Control System in the Absence of Linear Structure

王维峰 1汪宝彬 1杨怀奎1

作者信息

  • 1. 中南民族大学数学与统计学学院,湖北武汉430074
  • 折叠

摘要

Abstract

The Pontryagin's maximum principle for a stochastic optimal control system has been proved in this paper,under the assumptions that the diffusion coefficient does not contain the control variable,but the control domain has no linear structure.We also obtain the variational equation,adjoint equation and the Hamilton system for our problem.Furthermore,by the additional conditions,a second-order necessary condition is given,where the "second-order" is in the sense of that the forward Pontryagin's maximum principle is viewed as a first-order necessary optimality condition.

关键词

Pontryagin最大值原理/最优控制/随机Hamilton系统/线性结构

Key words

Pontryagin's maximum principle/Optimal control/Stochastic Hamilton system/Linear structure

分类

数理科学

引用本文复制引用

王维峰,汪宝彬,杨怀奎..一类不带线性结构的随机最优控制问题的最大值原理[J].应用数学,2017,30(2):445-456,12.

基金项目

Supported by the National Natural Science Foundation of China(11526195) and the special fund of basic scientific research of central colleges(CZQ14021) (11526195)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文