| 注册
首页|期刊导航|郑州大学学报(理学版)|基于PCA和多邻域粗糙集的肿瘤特征基因选择算法

基于PCA和多邻域粗糙集的肿瘤特征基因选择算法

徐久成 穆辉宇 冯森

郑州大学学报(理学版)2017,Vol.49Issue(4):28-33,6.
郑州大学学报(理学版)2017,Vol.49Issue(4):28-33,6.DOI:10.13705/j.issn.1671-6841.2017096

基于PCA和多邻域粗糙集的肿瘤特征基因选择算法

Tumor Feature Gene Selection Method Based on PCA and Multiple Neighborhood Rough Set

徐久成 1穆辉宇 2冯森1

作者信息

  • 1. 河南师范大学计算机与信息工程学院 河南新乡453007
  • 2. 河南省高校计算智能与数据挖掘工程技术研究中心 河南新乡453007
  • 折叠

摘要

Abstract

To solve the problems in higher time complexity and blurry description toward the gene expres-sion profile in the approximation calculation using the global neighborhood , an effective PNRS model was proposed based on principal component analysis (PCA) and neighborhood rough set (NRS).First of all, the low dimensional feature space was obtained by using PCA algorithm;then the multiple neighborhood rough set algorithm was adopted for feature gene selection , namely calculating neighborhood attribute val-ues through Euclidean distance , followed by approximation of neighborhood decision system .Finally, feature gene set was obtained by using the heuristic search method .The experimental results showed that the PNRS model achieved higher classification accuracy with respect to smaller gene subsets .The simula-tion results showed the validity of the proposed method .

关键词

特征选择/主成分分析/多邻域粗糙集/欧氏距离

Key words

feature selection/principal component analysis/multiple neighborhood rough set/Euclidean distance

分类

信息技术与安全科学

引用本文复制引用

徐久成,穆辉宇,冯森..基于PCA和多邻域粗糙集的肿瘤特征基因选择算法[J].郑州大学学报(理学版),2017,49(4):28-33,6.

基金项目

国家自然科学基金项目(61370169,61402153) (61370169,61402153)

河南省科技攻关重点项目(142102210056,162102210261) (142102210056,162102210261)

河南师范大学青年科学基金项目(2014QK28) (2014QK28)

河南省高等学校重点科研项目(16A520057). (16A520057)

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量0
|
下载量0
段落导航相关论文