| 注册
首页|期刊导航|广东电力|带校正的锅炉燃烧预测模型应用

带校正的锅炉燃烧预测模型应用

汤伟 王古月 李金

广东电力2017,Vol.30Issue(11):22-27,6.
广东电力2017,Vol.30Issue(11):22-27,6.DOI:10.3969/j.issn.1007-290X.2017.011.005

带校正的锅炉燃烧预测模型应用

Application of Boiler Combustion Prediction Model with Correction Element

汤伟 1王古月 2李金3

作者信息

  • 1. 陕西科技大学 电气与信息工程学院,陕西 西安 710021
  • 2. 陕西科技大学 机电工程学院,陕西 西安 710021
  • 3. 西安艾贝尔科技发展有限公司,陕西 西安 710021
  • 折叠

摘要

Abstract

The optimization method based on combustion optimization adjustment test is not able to keep long-acting effect.In order to satisfy imperious demands for high-effective and low-emission combustion of the boiler,a prediction model was es-tablished by virtue of test data of combustion optimization performance and using artificial neural network so as to realize soft measurement on carbon content in fly ash and exhaust gas temperature as well as rectify measuring values.Meanwhile, the corrective data was input into a hybrid model for boiler heating efficiency and NOx emission prediction.By continuously expanding training data dimension and using particle swarm optimization algorithm,real-time optimization for operating pa-rameters was realized.Practice has proved this method can use real-time data of the distributed control system to correctly acquire an optimal combustion adjustment scheme for the boiler and greatly reduce NOx emission on the basis of reasonable variation of boiler efficiency.

关键词

电站锅炉/燃烧优化/神经网络/粒子群算法/预测模型/校正/DCS

Key words

utility boiler/combustion optimization/neural network/particle swarm optimization/prediction model/correc-tion/DCS(distributed control system)

分类

能源科技

引用本文复制引用

汤伟,王古月,李金..带校正的锅炉燃烧预测模型应用[J].广东电力,2017,30(11):22-27,6.

基金项目

陕西省重点科技创新团队计划项目(2014KCT-15) (2014KCT-15)

广东电力

OACSTPCD

1007-290X

访问量0
|
下载量0
段落导航相关论文