吉林大学学报(理学版)2017,Vol.55Issue(6):1437-1442,6.DOI:10.13413/j.cnki.jdxblxb.2017.06.16
球面上k-极值子流形的特征值问题
Eigenvalue Problem of k-Extremal Submanifolds in a Sphere
摘要
Abstract
We estimated the upper bound of the first eigenvalue of the Schr?dinger operator L=-Δ-k (2- 1/p ) (S -nH 2 )on the n-dimensional closed k-extremal (k ≥1)submanifold Mn in a unit sphere S n+p (n ≥ 3 ) by choosing suitable text function.Then,we gave some characteristics of submanifolds M n based on the eigenvalue,where H and S were the mean curvature and the squared length of the second fundamental form,of Mn respectively,Δ was the Laplace operator on Mn .关键词
k-极值子流形/Schrödinger型算子/第一特征值Key words
k-extremal submanifold/Schrödinger operator/first eigenvalue分类
数理科学引用本文复制引用
米蓉,刘建成..球面上k-极值子流形的特征值问题[J].吉林大学学报(理学版),2017,55(6):1437-1442,6.基金项目
国家自然科学基金(批准号:11261051 ()
11761061). ()