| 注册
首页|期刊导航|计算机工程与科学|广义多变量模糊C均值聚类算法

广义多变量模糊C均值聚类算法

文传军 汪庆淼

计算机工程与科学2017,Vol.39Issue(11):2153-2160,8.
计算机工程与科学2017,Vol.39Issue(11):2153-2160,8.DOI:10.3969/j.issn.1007-130X.2017.11.026

广义多变量模糊C均值聚类算法

A general multivariable fuzzy C-means clustering algorithm

文传军 1汪庆淼2

作者信息

  • 1. 常州工学院数理与化工学院,江苏常州213032
  • 2. 苏州大学计算机学院,江苏苏州215021
  • 折叠

摘要

Abstract

That the fuzzy index m must be larger than I can guarantee the convergence of the fuzzy clustering algorithm,however,it also restricts the universality of the clustering algorithm.We propose a novel clustering algorithm called the general multivariable fuzzy C-means clustering (GMFCM).Based on multivariable fuzzy C-means clustering (MFCM),the particle swarm optimization algorithm (PSO) is used to perform the optimization estimation on the fuzzy memberships of the GMFCM,thus the scope of the fuzzy index m is extended to m>0,and the iterative formula of clustering center is derived by the gradient method for the GMFCM.We prove the thereom of new m value scope theoretically and discuss the convergence of the GMFCM.The GMFCM removes the restriction of the fuzzy clsutering on m,and makes up the incompleteness of the MFCM algorithm when the clustering center components and the sample components overlap.Simulation experiments prove the effectiveness of the GMFCM.

关键词

模糊聚类/模糊指标/多变量模糊C均值聚类/粒子群优化算法/模糊隶属度

Key words

fuzzy clustering/fuzzy index/multivariable fuzzy C-means clustering (MFCM)/particle swarm optimization(PSO)/fuzzy membership

分类

信息技术与安全科学

引用本文复制引用

文传军,汪庆淼..广义多变量模糊C均值聚类算法[J].计算机工程与科学,2017,39(11):2153-2160,8.

基金项目

国家自然科学基金(61170126) (61170126)

常州工学院校级课题(YN1305) (YN1305)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文