| 注册
首页|期刊导航|应用数学|行负相依随机变量阵列的完全收敛性

行负相依随机变量阵列的完全收敛性

黄海午

应用数学2017,Vol.30Issue(4):864-873,10.
应用数学2017,Vol.30Issue(4):864-873,10.

行负相依随机变量阵列的完全收敛性

On the Complete Convergence for Arrays of Rowwise Negatively Associated Random Variables

黄海午1

作者信息

  • 1. 衡阳师范学院数学与统计学院,湖南衡阳421002;湖南省重点实验室智能信息处理与应用,湖南衡阳421002
  • 折叠

摘要

Abstract

In this work,the author investigates the complete convergence of the maximum partial sums for arrays of rowwise negatively associated random variables without assumptions of identical distribution and stochastic domination,and obtains some new results,which extend and improve previous known theorems for arrays of rowwise independent and rowwise negatively associated random variables.As an application,the Chung-type strong law of large numbers for arrays of rowwise negatively associated random variables is also obtained.

关键词

行负相依随机变量阵列/完全收敛性/Chung型强大数定律

Key words

Arrays of rowwise negatively associated random variables/Complete convergence/Chung-type strong law of large numbers

分类

数理科学

引用本文复制引用

黄海午..行负相依随机变量阵列的完全收敛性[J].应用数学,2017,30(4):864-873,10.

基金项目

Supported by the National Nature Science Foundation of China (11526085),the Humanities and Social Sciences Foundation for the Youth Scholars of Ministry of Education of China (15YJCZH066),the Science and Technology Plan Project of Hunan Province(2016TP1020) and the Construct Program of the Key Discipline in Hunan Province (11526085)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文