| 注册
首页|期刊导航|华东理工大学学报(自然科学版)|基于极值随机森林的慢性胃炎中医证候分类

基于极值随机森林的慢性胃炎中医证候分类

颜建军 胡宗杰 刘国萍 王忆勤 付晶晶 郭睿 钱鹏

华东理工大学学报(自然科学版)2017,Vol.43Issue(5):698-703,6.
华东理工大学学报(自然科学版)2017,Vol.43Issue(5):698-703,6.DOI:10.14135/j.cnki.1006-3080.2017.05.015

基于极值随机森林的慢性胃炎中医证候分类

Syndrome Classification of Chronic Gastritis Based on Extremely Randomized Forest Algorithm

颜建军 1胡宗杰 1刘国萍 2王忆勤 2付晶晶 2郭睿 2钱鹏3

作者信息

  • 1. 华东理工大学机械与动力工程学院,上海200237
  • 2. 上海中医药大学四诊信息综合实验室,上海201203
  • 3. 上海中医药大学交叉科学研究院,上海201203
  • 折叠

摘要

Abstract

Syndrome differentiation and treatment,which is the essence of traditional Chinese medicine (TCM),contain abundant rules.The majority of machine learning algorithms can obtain good classification accuracy,but these models are difficult to be explained.The models established by random forests have great interpretability,while these models cannot deal with multi-syndrome that patients may simultaneously have more than one syndrome in TCM.In this paper,syndrome classification for Chronic Gastritis (CG) is researched by using extremely randomized forest (ERF) algorithm,and compared with state-of-the-art multi-label algorithms and the tree-based algorithms (such as C4.5,CART).The experimental results show that ERF algorithm has better performance than other algorithms in the classification accuracy of every label and the six evaluation metrics of multi-label learning.The rules obtained in the model are basically in accord with TCM theory.

关键词

证候分类/极值随机森林/可解释性/慢性胃炎/决策树

Key words

syndrome classification/extremely randomized forest/interpretability/chronic gastritis/decision tree

分类

医药卫生

引用本文复制引用

颜建军,胡宗杰,刘国萍,王忆勤,付晶晶,郭睿,钱鹏..基于极值随机森林的慢性胃炎中医证候分类[J].华东理工大学学报(自然科学版),2017,43(5):698-703,6.

基金项目

国家自然科学基金(81270050,81302913,30901897,81173199) (81270050,81302913,30901897,81173199)

华东理工大学学报(自然科学版)

OA北大核心CHSSCDCSCDCSTPCD

1006-3080

访问量0
|
下载量0
段落导航相关论文