| 注册
首页|期刊导航|中国医疗设备|基于深度学习的CT脑影像分类方法用于阿尔茨海默病的初步筛查

基于深度学习的CT脑影像分类方法用于阿尔茨海默病的初步筛查

惠瑞 高小红 田增民

中国医疗设备2017,Vol.32Issue(12):15-19,5.
中国医疗设备2017,Vol.32Issue(12):15-19,5.DOI:10.3969/j.issn.1674-1633.2017.12.004

基于深度学习的CT脑影像分类方法用于阿尔茨海默病的初步筛查

CT Brain Image Classification Based on Deep Learning in Application of Screening of Alzheimer Disease

惠瑞 1高小红 2田增民3

作者信息

  • 1. 中国人民解放军海军总医院 神经外科,北京 100048
  • 2. 布莱根妇女医院 神经外科,波士顿 02115
  • 3. 密德萨斯大学 计算机科学部,伦敦 NW44BT,英国
  • 折叠

摘要

Abstract

Objective The study aims to discuss the application of deep leaning based on the convolutional neural network (CNN) in the CT imaging classification, so as to improve the intelligent image classification for clinical screening of Alzheimer disease (AD). Methods Three categories of brain CT image data, including the data from AD patients, organic lesion patients (eg. tumor, cerebral hemorrhage) and normal aging patients were collected. For the reason that the relative horizontal direction in CT brain image was high (z axis, seam thickness 5 mm), we fused the two dimensional and three dimensional CNN data in this study, and the results were compared with the diagnostic results. Results The accuracy rates of diagnosis for AD patients, organic lesion patients and normal aging patients were 84.2%, 73.9% and 88.9% respectively, with mean rate of 82.3%. Conclusion Our results supply a new method for preliminary screen of AD.

关键词

卷积神经网络/图像分类/CT影像/阿尔茨海默病

Key words

convolutional neural network/image classification/CT image/Alzheimer disease

分类

医药卫生

引用本文复制引用

惠瑞,高小红,田增民..基于深度学习的CT脑影像分类方法用于阿尔茨海默病的初步筛查[J].中国医疗设备,2017,32(12):15-19,5.

基金项目

国家863计划(2007AA420100-1) (2007AA420100-1)

European Union's Framework 7 research program under grant agreement(PIRSES-GA-2010-269124). (PIRSES-GA-2010-269124)

中国医疗设备

OACSTPCD

1674-1633

访问量2
|
下载量0
段落导航相关论文