| 注册
首页|期刊导航|河北科技大学学报|具有随机波动率的美式期权定价

具有随机波动率的美式期权定价

李萍 李建辉

河北科技大学学报2017,Vol.38Issue(6):542-547,6.
河北科技大学学报2017,Vol.38Issue(6):542-547,6.DOI:10.7535/hbkd.2017yx06006

具有随机波动率的美式期权定价

American option pricing with stochastic volatility processes

李萍 1李建辉2

作者信息

  • 1. 西安工程大学理学院,陕西西安 710048
  • 2. 西京学院应用统计与理学系,陕西西安 710123
  • 折叠

摘要

Abstract

In order to solve the problem of option pricing more perfectly,the option pricing problem with Heston stochastic volatility model is considered.The optimal implementation boundary of American option and the conditions for its early execu-tion are analyzed and discussed.In view of the fact that there is no analytical American option pricing formula,through the space discretization parameters,the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations,and then using high order compact finite difference method,numerical solutions are obtained for the option price.The numerical experiments are carried out to verify the theoreti-cal results and simulation.The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared,and the results show that the optimal exercise boundary also has stochastic volatility.Under the setting of parameters,the behavior and the nature of volatility are analyzed,the volatility curve is simulated,the calculation results of high order compact difference method are compared,and the numerical option solution is obtained,so that the method is verified.The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

关键词

金融市场/随机分析/美式期权/随机波动率/自由边界/有限差分法

Key words

finance markets/stochastic analysis/American option/stochastic volatility/free boundary/finite difference method

分类

数理科学

引用本文复制引用

李萍,李建辉..具有随机波动率的美式期权定价[J].河北科技大学学报,2017,38(6):542-547,6.

基金项目

陕西省自然科学基金(2016JM1009) (2016JM1009)

陕西省教育厅专项科研计划基金(15JK2183,15JK2134) (15JK2183,15JK2134)

河北科技大学学报

OACSTPCD

1008-1542

访问量0
|
下载量0
段落导航相关论文