| 注册
首页|期刊导航|计算机工程与应用|结构化稀疏低秩子空间聚类

结构化稀疏低秩子空间聚类

张红 王卫卫 孔胜江

计算机工程与应用2017,Vol.53Issue(24):23-29,7.
计算机工程与应用2017,Vol.53Issue(24):23-29,7.DOI:10.3778/j.issn.1002-8331.1711-0049

结构化稀疏低秩子空间聚类

Structured sparse and low rank subspace clustering

张红 1王卫卫 1孔胜江1

作者信息

  • 1. 西安电子科技大学 数学与统计学院,西安 710126
  • 折叠

摘要

Abstract

A new subspace structured low rank regularity is defined. Combining with the subspace Structured Sparse Sub-space Clustering method(SSSC), a new unified optimization model is given. The new model uses the estimated cluster membership of the samples and the affinity of the samples to guide each other so that the affinity possesses both discrimi-nation and coherence and the cluster membership have coherence property. The discrimination of the affinity tends to seg-ment data from different subspaces into different clusters while the coherence tends to group data from the same subspace into the same cluster. Experiments show that the proposed method outperforms the state-of-the-art two-stage methods and the SSSC method.

关键词

子空间聚类/子空间结构化低秩/相似度/判别性/一致性

Key words

subspace clustering/subspace structured low rank/affinity/discrimination/coherence

分类

信息技术与安全科学

引用本文复制引用

张红,王卫卫,孔胜江..结构化稀疏低秩子空间聚类[J].计算机工程与应用,2017,53(24):23-29,7.

基金项目

国家自然科学基金(No.61472303,No.61772389,No.61271294). (No.61472303,No.61772389,No.61271294)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文