| 注册
首页|期刊导航|可再生能源|基于优化聚类的组合风速短期预测

基于优化聚类的组合风速短期预测

陈记牢 栗惠惠 李富强 郝飞 张圆美

可再生能源2017,Vol.35Issue(12):1841-1846,6.
可再生能源2017,Vol.35Issue(12):1841-1846,6.

基于优化聚类的组合风速短期预测

Short-term wind speed forecasting of combined ELM based on optimal clustering

陈记牢 1栗惠惠 1李富强 1郝飞 1张圆美2

作者信息

  • 1. 呼和浩特职业学院 机电学院, 内蒙古 呼和浩特 010060
  • 2. 国网吉林省电力有限公司 经济技术研究院,吉林 长春 130062
  • 折叠

摘要

Abstract

Accurate wind speed prediction is the key to wind power forecastingand very important to the safe and stable operation of power system. This paper presents a method of combined short-term wind speed forecasting based on optimal fuzzy C means (OFCM)clustering.First of all,the initial clustering center of fuzzy C means clustering algorithm is optimizedby using simulated annealing genetic algorithm. Then,the initial wind speed attribute data is classified. According to the differentwind speed samples,combined wind speed forecasting model is builtby using extreme learning machine (ELM).Finally,the feasibility of the method is verified by comparing the measured data with predicted value.

关键词

风速预测/模拟退化遗传算法/FCM聚类/极限学习机

Key words

wind speed forecasting/genetic simulated annealing algorithm/FCM clustering/extreme learning machine

分类

能源科技

引用本文复制引用

陈记牢,栗惠惠,李富强,郝飞,张圆美..基于优化聚类的组合风速短期预测[J].可再生能源,2017,35(12):1841-1846,6.

基金项目

国家高技术研究发展计划"863"资助项目(SS2014AA052502). (SS2014AA052502)

可再生能源

OA北大核心CSTPCD

1671-5292

访问量0
|
下载量0
段落导航相关论文