| 注册
首页|期刊导航|铁道标准设计|基于BP神经网络修正的自适应灰色模型的隧道变形预测研究

基于BP神经网络修正的自适应灰色模型的隧道变形预测研究

叶超

铁道标准设计2017,Vol.61Issue(11):76-81,6.
铁道标准设计2017,Vol.61Issue(11):76-81,6.DOI:10.13238/j.issn.1004-2954.2017.11.016

基于BP神经网络修正的自适应灰色模型的隧道变形预测研究

Research on Deformation Prediction of Tunnel Based on Adaptive Grey Model of BP Neural Network Correction

叶超1

作者信息

  • 1. 陕西铁路工程职业技术学院,陕西渭南714000
  • 折叠

摘要

Abstract

The tunnel surrounding rock has the characteristics of high nonlinear deformation,which can be used to identify the development trend of tunnel deformation.In this paper,tunnel deformation is predicted preliminarily with adaptive GM (1,1) model,and the model parameters are optimized by particle swarm algorithm to ensure that the parameters of the adaptive model are the global optimal;secondly,the error correction model is established based on BP neural network to further improve the prediction accuracy.On this basis,the prediction model is applied to two engineering cases.The results show that the prediction model has better predication results in horizontal and vertical prediction with strong adaptive and recursive abilities.The predication results are proved in good agreement with the measurements with high accuracy to better reflect the deformation law of tunnel surrounding rock.The model can effectively conduct dynamic prediction of tunnel surrounding rock and can be used widely in tunnel deformation prediction.

关键词

隧道/沉降变形/自适应GM(1,1)模型/BP神经网络/变形预测

Key words

Tunnel/Settlement and deformation/Adaptive GM (1, 1) model/BP neural network/Deformation prediction

分类

交通工程

引用本文复制引用

叶超..基于BP神经网络修正的自适应灰色模型的隧道变形预测研究[J].铁道标准设计,2017,61(11):76-81,6.

基金项目

陕西铁路工程职业技术学院科研项目(KY2016-02) (KY2016-02)

铁道标准设计

OA北大核心

1004-2954

访问量0
|
下载量0
段落导航相关论文