| 注册
首页|期刊导航|自动化学报|基于自适应背景模板与空间先验的显著性物体检测方法

基于自适应背景模板与空间先验的显著性物体检测方法

林华锋 李静 刘国栋 梁大川 李东民

自动化学报2017,Vol.43Issue(10):1736-1748,13.
自动化学报2017,Vol.43Issue(10):1736-1748,13.DOI:10.16383/j.aas.2017.c160431

基于自适应背景模板与空间先验的显著性物体检测方法

Saliency Detection Method Using Adaptive Background Template and Spatial Prior

林华锋 1李静 2刘国栋 1梁大川 2李东民3

作者信息

  • 1. 南京航空航天大学计算机科学与技术学院 南京 211100
  • 2. 软件新技术与产业化协同创新中心 南京 211100
  • 3. 江苏省委党校 南京210004
  • 折叠

摘要

Abstract

Due to its effectiveness of identifying salient object while suppressing the background,boundary prior has been widely used in saliency detection recently.However,if the locations of salient regions are near the image border,the existing methods would not be suitable.In order to improve the robustness of saliency detection,we propose an improved saliency detection method using adaptive background template and spatial prior.Firstly,according to the rarity of salient object in the color space,a selection strategy is presented to establish the adaptive background template by removing the potential saliency superpixels from the image border regions,and a saliency map is obtained.A propagation mechanism based on K-means algorithm is designed for maintaining the neighborhood coherence of the above saliency map.Secondly,according to the aggregation of salient object,a new spatial prior is presented to integrate the saliency detection results by aggregating two complementary measures such as image center preference and the background template exclusion.Finally,the final salient map is obtained by fusing the above two salient maps.Quantitative experiments on four available datasets MSRA-1000,SOD,ECSSD and new constructed CBD demonstrate that our method outperforms other state-of-the-art saliency detection approaches.

关键词

显著性检测/背景模板/传播机制/空间先验

Key words

Saliency detection/background template/propagation mechanism/spatial prior

引用本文复制引用

林华锋,李静,刘国栋,梁大川,李东民..基于自适应背景模板与空间先验的显著性物体检测方法[J].自动化学报,2017,43(10):1736-1748,13.

基金项目

中央高校基本科研业务费专项资金(NS2015092)资助 (NS2015092)

Supported by Fundamental Research Funds for the Central Universities (NS2015092) (NS2015092)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文